LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2013

MT 3812 - CLASSICAL MECHANICS

CHICEAT LIST VESTEL		WII 3012 - CLASSIC	AL MECHANIC	, , ,	
	7/11/2013 00 - 12:00	Dept. No.		Max.: 100 Marks	
Answer ALL	the questions				
	mechanical effectii. Nature is the iii. Newton invermathematical proiv is an abov. The law of control of the iii.	e work by that people nted the branch of mather oblems stract physical quantity the nservation of energy was fir OR	think of when they natics in order at is not easily per	y think of physics. er to solve difficult received by humans.	tum
D. Sta	te and prove the p	orinciple of virtual work			[5]
	ive the Lagrange's	_	find the differentia	ıl equation of motion of a	
points	e and prove the V plane is a straight	OR 'ariational principle and P t line.	rove that the short	est distance between two	
02. a. i.Gene	eralized momenta	: p _k =			
ii. Rela	ation between the	Lagrangian L and the Ha cal system, $H = KE + \dots$			
iv. Ha	milton's canonica	l equations of motion: $\frac{\partial l}{\partial q}$	$\frac{H}{\partial p_1}$ and $\frac{\partial H}{\partial p_1}$	· -=	
		ate is one which is absent OR	K r		
b. Find th	he Routh's function	on for the motion of a part	ticle in the central	force field.	[E]
	_	iple and deduce Lagrange action of one dimension F	-		[5]
-		OR			
d. State a [15]	nd prove Hamilto	n's principle of least action	on		
as ii iii. The a	 -has both kinds of angles θ, φ, ψ ar	e function of time with sar Eperiodicity. The known as The have one degree freedo	- ,	-	iown
			-		

v. $G_2 = \sum_j q_j P_j$ generates an ----- transformation.

OR

b. Show that $Q = (2q)^{1/2} e^k \cos p$, $P = (2q)^{1/2} e^{-k} \sin p$ is a canonical transform.

[5]

- c. Discuss about the motion of a top by using
 - i.Lagrange's method
 - ii. Hamilton's method

[7+8]

OR

d. State and prove Integral invariant theorem of Point care

[15]

- 04. a. i. The solution of H $(q_1, q_2 \ q_{3,...}, q_n, \frac{\partial F_2}{\partial q_1}, \frac{\partial F_2}{\partial q_2}, \frac{\partial F_2}{\partial q_3},, \frac{\partial F_2}{\partial q_n}, t) + \frac{\partial F_2}{\partial t} = 0$ is known as ---
 - ii. If u is a function of q_i, p_i, t then $\frac{du}{dt} = [u, H] + ---$
 - iii. v[u, w] + w[u, v] = ---
 - iv. If q_i is cyclic, then p_i is a -----

v.
$$\sum_{l=1}^{2n} \{u_l, u_i\} [u_l, u_j] = ----$$

OR

- b. Derive the transformation equation for infinite decimal contact transformation in terms of Poisson bracket [5]
- c. Derive the conservation theorem of angular momentum using infinite decimal contact transformation

OR

d. State and prove Jacobi's Identity

[15]

- 05. a. i. The *Complete* integral W of Hamilton Jacobi equation $H(q_k, \frac{\partial W'}{\partial q_k}) = \alpha_1$ is called -----
 - ii. Separation of variables in Hamilton Jacobi's equation is possible only if -----
 - iii. For a conservative dynamical system in which the generalized coordinates θ , ϕ are cyclic and r is noncyclic, then the solution is given by ------
 - vi. If the variables q_k , k = 1,...n are cyclic, then the solution is of the form ------
 - v. If W_k denotes characteristic function, then $J_k = \iint \frac{\partial W_k}{\partial q_k} \ dq_k$ is known as ------

OR

b. Discuss the motion of a particle moving in a plane under the action of central

[5]

c. Discuss the Harmonic Oscillator problem using Hamilton Jacobi equation

ΛR

d. Discuss Kepler's problem using action angle variable.

[15]